Local dimension of differential algebraic variety
نویسنده
چکیده
We consider a relation between local and global characteristics of a differential algebraic variety. We prove that dimension of tangent space for every regular point of an irreducible differential algebraic variety coincides with dimension of the variety. Additionally, we classify tangent spaces at regular points in the case of one derivation.
منابع مشابه
Intersection Theory in Differential Algebraic Geometry: Generic Intersections and the Differential Chow Form
In this paper, an intersection theory for generic differential polynomials is presented. The intersection of an irreducible differential variety of dimension d and order h with a generic differential hypersurface of order s is shown to be an irreducible variety of dimension d − 1 and order h + s. As a consequence, the dimension conjecture for generic differential polynomials is proved. Based on...
متن کاملDifferential Chow Form for Projective Differential Variety
In this paper, a generic intersection theorem in projective differential algebraic geometry is presented. Precisely, the intersection of an irreducible projective differential variety of dimension d > 0 and order h with a generic projective differential hyperplane is shown to be an irreducible projective differential variety of dimension d − 1 and order h. Based on the generic intersection theo...
متن کاملUPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...
متن کاملGENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS
Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.
متن کاملGelfand-Kirillov Dimension of Commutative Subalgebras of Simple Infinite Dimensional Algebras and their Quotient Division Algebras
Throughout this paper, K is a field, a module M over an algebra A means a left module denoted AM , ⊗ = ⊗K . In contrast to the finite dimensional case, there is no general theory of central simple infinite dimensional algebras. In some sense, structure of simple finite dimensional algebras is ‘determined’ by their maximal commutative subalgebras (subfields)[see [18] for example]. Whether this s...
متن کامل